Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy.

نویسندگان

  • Oi-Hong Tung
  • Shyh-Yuan Lee
  • Yu-Lin Lai
  • How-Foo Chen
چکیده

Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing multiphoton fluorescence microscopy light collection from living tissue by noncontact total emission detection (epiTED).

A benefit of multiphoton fluorescence microscopy is the inherent optical sectioning that occurs during excitation at the diffraction-limited spot. The scanned collection of fluorescence emission is incoherent; that is, no real image needs to be formed on the detector plane. The nearly isotropic emission of fluorescence excited at the focal spot allows for new detection schemes that efficiently ...

متن کامل

Multiphoton excitation fluorescence microscopy of 5-aminolevulinic acid induced fluorescence in experimental gliomas.

BACKGROUND AND OBJECTIVE The clinical usefulness of 5-ALA guided detection of tumor tissue has been demonstrated for a number of malignancies. However, current techniques of intraoperative detection of protoporphyrin IX fluorescence in situ do not offer subcellular resolution. Therefore, discrimination of non-specific 5-ALA induced fluorescence remains difficult. MATERIALS AND METHODS In this...

متن کامل

Simultaneous multilayer scanning and detection for multiphoton fluorescence microscopy

Fast three-(3D) imaging requires parallel optical slicing of a specimen with an efficient detection scheme. The generation of multiple localized dot-like excitation structures solves the problem of simultaneous slicing multiple specimen layers, but an efficient detection scheme is necessary. Confocal theta detection (detection at 90° to the optical axis) provides a suitable detection platform t...

متن کامل

Multispot multiphoton Ca²⁺ imaging in acute myocardial slices.

Multiphoton microscopy has become essential for dynamic imaging in thick living tissues. High-rate, full-field image acquisition in multiphoton microscopy is achievable by parallelization of the excitation and detection pathways. We developed our approach via a diffractive optical element which splits a pulsed laser into 16 beamlets and exploits a descanned detection system consisting of an arr...

متن کامل

Nanomaterials in fluorescence-based biosensing.

Fluorescence-based detection is the most common method utilized in biosensing because of its high sensitivity, simplicity, and diversity. In the era of nanotechnology, nanomaterials are starting to replace traditional organic dyes as detection labels because they offer superior optical properties, such as brighter fluorescence, wider selections of excitation and emission wavelengths, higher pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2011